SUBJECT INDEX

Accumulators	silver-zinc, construction of miniature,
nickel-cadmium, plastic-bonded elec-	and the technology for their mass
trodes for,	production, 67
VIII. Study of oxygen recombina-	zinc-chlorine, a design for, 359
tion rate on plastic-bonded cadmi-	Bismuth
um electrodes provided with active	electrochemical behaviour of new
carbon catalyst. 3	cathodic materials usable in lithi-
IX. Oxygen recombination rate on	um batteries. $AgBi(CrO_4)_2$ and
plastic-bonded electrodes with dif-	$Bi_{2}O(CrO_{A})_{2}, 277$
ferent active materials, 273	2 (1/2)
X. The nature of the second dis-	Cadmium
charge step of nickel oxide elec-	nickel-cadmium batteries, sealed, a
trodes. 351	failure model for, 369
nickel-cadmium, optimisation of active	Ni-Cd cells, sealed, on the anomalous
material for positive electrodes of 9	behaviour of deeply discharged.
Active material	403
for positive electrodes of Ni–Cd ac-	plastic-bonded electrodes for nickel-
cumulators, optimisation of, 9	cadmium accumulators.
· · · · · · · · · · · · · · · · · · ·	VIII. Study of oxygen recombina-
Battery	tion rate on plastic-bonded cadmi-
electrolytes, subzero, kinetic barriers	um electrodes provided with active
to the preferred electrode process	carbon catalyst. 3
in, 83	IX. Oxygen recombination rate on
manganese dioxide — a survey of its	plastic-bonded cadmium electrodes
history and etymology, 133	with different active materials, 273
positive electrodes, a new method for	X. The nature of the second dis-
examining mixtures of two crystal-	charge step of nickel oxide elec-
line varieties of a metal oxide for,	trodes, 351
121	positive electrodes of Ni-Cd accumula-
Batteries	tors, optimisation of active materi-
an automatic system for assessing the	al for, 9
electrical performance of electrodes	Capacity limiting process
and, 99	sulfate passivation in the lead-acid
lead-acid	system as a, 159
a study of the discharge character-	Carbon
istics of, 41	-air electrodes, influence of structure
sulphation in discharged, 143	and hydrophobic properties on the
lead/acid traction, crystalline phase	characteristics of, 17
composition of positive plates in,	catalyst, study of oxygen recombina-
under simulated electric vehicle	tion rate on plastic-bonded cadmi-
service, 175	um electrodes provided with active,
lithium, new cathodic materials usable	3
in, electrochemical behaviour of, 277	Catalytst
lithium organic electrolyte, on the use	active carbon, study of oxygen recom-
of rocking chair configurations	bination rate on plastic-bonded
for, 289	cadmium electrodes provided with, 3
nickel–cadmium, sealed, a failure	platinum, corrosion of, in alkaline

model for, 369

© Elsevier Sequoia/Printed in The Netherlands

solutions, 301

- Catalytic recombination device
- a self-limiting, hydrogen/oxygen, 211 Cathodic materials
 - usable in lithium batteries: AgBi-(CrO₄)₂ and Bi₂O(CrO₄)₂, electrochemical behaviour of new, 277
- Cells
 - galvanic, electrolyte creepage in, I. Contribution to the phenomena, 257

II. Transport mechanism at high pressures, 267

- lead-acid, fundamentals of, XVII. Negative organic expander action at low temperatures, 197
- lithium-manganese dioxide, low temperature discharge characteristics of, 35
- lithium-metal sulphide, pelletized, Part I. A selected review, 327 Part II. Some operating characteristics of pelletized LiAl-FeS cells, 341
- Li/SO₂, investigation and production control of, by the galvanostatic pulse method, 395
- Ni-Cd, sealed, on the anomalous behaviour of deeply discharged, 403 Chlorine
 - zinc-chlorine batteries, a design for, 359
- Chromium

electrochemical behaviour of new cathodic materials usable in lithium batteries, $AgBi(CrO_4)_2$ and $Bi_2O(CrO_4)_2$, 277

- Corrosion
 - of platinum catalyst in alkaline solutions, 301
- Crystalline phase composition
 - of positive plates in lead/acid traction batteries under simulated electric vehicle service, 175
- **Discharge characteristics**
 - of lead-acid batteries, a study of the, 41 of lithium-manganese dioxide cells,
- low temperature, 35 Discharge step
 - of nickel oxide electrodes, nature of second, 351
- **Electrical performance**
 - of electrodes and batteries, an automatic system for assessing the, 99

Electric vehicle service

- crystalline phase composition of positive plates in lead/acid traction batteries under simulated, 175
- Electrochemical behaviour
 - of new cathodic materials usable in lithium batteries: AgBi(CrO₄)₂ and Bi₂O(CrO₄)₂, 277
- Electrochemistry
 - of nickel hydroxides and oxyhydroxides, review of the structure and the, 229
- Electrode(s)
 - an automatic system for assessing the electrical performance of, and batteries, 99
 - cadmium, plastic-bonded oxygen recombination rate on, provided with active carbon catalyst, 3
 - oxygen, recombination rate on, with different active materials, 273
 - carbon-air, influence of structure and hydrophobic properties on the characteristics of, 17
 - manganese dioxide
 - VII. Experimental determination and a simple theoretical description of the electrical potential of solid solutions in the range γ -MnO₂ to δ -MnOOH, 113
 - nickel
 - plastic bonded, microstructure of, 55 plastic bonded (pressed type) high rate, the internal resistance of, 61
 - nickel oxide, the nature of the second discharge step, 351
 - plastic-bonded, for nickel-cadmium accumulators.

VIII. Study of oxygen recombination rate on plastic-bonded cadmium electrodes provided with active carbon catalyst, 3

IX. Oxygen recombination rate on plastic-bonded cadmium electrodes with different active materials, 273 X. The nature of the second discharge step of nickel oxide electrodes, 351

- positive battery, a new method for examining mixtures of two crystalline varieties of a metal oxide for, 121
- positive, of Ni-Cd accumulators, optimisation of active material for, 9

Electrode process

- in subzero battery electrolytes, kinetic barriers to the preferred, 83
- Electrolyte(s)
 - lithium organic, batteries, on the use of rocking chair configurations for, 289 subzero battery, kinetic barriers to the
- preferred electrode process in, 83 Electrolyte creepage

in galvanic cells

I. Contribution to the phenomena, 257

- II. Transport mechanism at high pressures, 267
- **Energy** storage
 - flywheels for, review of, with reference to their potential for use in space, 311

Flywheels

- for energy storage, review of, with reference to their potential for use in space, 311
- Galvanic cells
 - electrolyte creepage in,
 - I. Contribution to the phenomena, 257
 - II. Transport mechanism at high pressures, 267
- Galvanostatic pulse method
 - investigation and production control of Li/SO₂ cells by the, 395
- Hydrogen/oxygen
 - recombination device, a self-limiting catalytic, 211
- Hydrophobic properties influence of structure and, on the characteristics of carbon-air electrodes, 17

Hydroxides

- nickel, and oxyhydroxides, review of the structure and electrochemistry, 229
- Kinetic barriers
 - to the preferred electrode process in subzero battery electrolytes, 83
- Lead-acid
 - batteries a study of the discharge characteristics, 41 sulphation in discharged, 143

cells, fundamentals of,

XVII. Negative organic expander action at low temperatures, 197

- system, sulfate passivation in the, as a capacity limiting process, 159
- traction batteries, crystalline phase composition of positive plates in, under simulated electric vehicle service, 175
- tubular positives, factors affecting the formation of, 385
- Lithium
 - batteries, new cathodic materials usable in, electrochemical behaviour of, 277
 - Li/SO₂ cells, investigation and production control of, by the galvanostatic pulse method, 395
 - manganese dioxide cells, low temperature discharge characteristics of, 35
 metal sulphide cells, pelletized
 - Part I. A selected review, 327 Part II. Some operating characteristics of pelletized LiAl-FeS cells, 341
 - organic electrolyte batteries, on the use of rocking chair configurations for, 289

Manganese, γ-MnO₂ to δ-MnOOH manganese dioxide electrode, the electrical potential of solid solutions in the range, 113

- Manganese dioxide
 - battery, a survey of its history and etymology, 133
 - electrode
 - VII. Experimental determination and a simple theoretical description of the electrical potential of solid solutions in the range γ -MnO₂ to δ -MnOOH, 113
 - lithium-manganese dioxide cells, low temperature discharge characteristics of, 35
- Metal oxide
 - for positive battery electrodes, a new method for examining mixtures of two crystalline varieties of a, 121
- Microstructure

of plastic bonded nickel electrodes, 55 Miniature batteries

silver-zinc, construction of, and the technology for their mass production, 67 Nickel

- -cadmium batteries, sealed, a failure model for, 369
- -cadmium cells, sealed on the anomalous behaviour of deeply discharged, 403
- electrodes
- plastic bonded, microstructure of, 55 plastic bonded (pressed type) high type rate, the internal resistance of, 61
- hydroxides and oxyhydroxides, review of the structure and the electrochemistry of, 229
- plastic-bonded electrodes for nickelcadmium accumulators.
 - VIII. Study of oxygen recombination rate on plastic-bonded cadmium electrodes provided with active carbon catalyst, 3
 - IX. Oxygen recombination rate on plastic-bonded cadmium electrodes with different active materials, 273 X. The nature of the second discharge step of nickel oxide electrodes, 351
- positive electrodes of Ni–Cd accumulators, optimisation of active material for, 9
- Nickel oxide
 - electrodes, nature of second discharge step, 351
- Organic expander action
 - negative, at low temperatures, fundamentals of lead-acid cells, 197
- Oxygen
 - a self-limiting hydrogen/oxygen recombination device, 211
- Oxygen recombination rate
- on plastic-bonded cadmium electrodes with active carbon catalyst, 3 with different active materials, 273

Oxyhydroxides

- nickel, and hydroxides, review of the structure and electrochemistry, 229
- Passivation
- sulfate, in the lead-acid system as a capacity limiting process, 159 Platinum
 - catalyst, corrosion of, in alkaline solutions, 301
- Positive electrodes
 - of Ni-Cd accumulators, optimisation of active material for, 9

Positive plates

in lead/acid traction batteries under simulated electric vehicle service, crystalline phase composition of, 175

Recombination device

a self-limiting catalytic hydrogen/ oxygen, 211

Resistance

internal, of plastic bonded (pressed type) high rate Ni electrodes, 61

Rocking chair configurations for cyclable lithium organic electrolyte batteries, 289

Silver

- electrochemical behaviour of new cathodic materials usable in lithium batteries, AgBi(CrO₄)₂ and Bi₂O(CrO₄)₂, 277
- -zinc batteries, construction of miniature, and the technology for their mass production, 67

Space

- flywheels for energy storage with reference to their potential for use in, 311
- Structure
 - of nickel hydroxides and oxyhydroxides, review of, and the electrochemistry of, 229
- Sulfate passivation
 - in the lead-acid system as a capacity limiting process, 159
- Sulphation

in discharged lead-acid batteries, 143 Sulphide

- lithium-metal sulphide cells, pelletized, Part I. A selected review, 327 Part II. Some operating characteristics of pelletized LiAl-FeS cells, 341
- Sulphur dioxide
 - Li/SO₂ cells, investigation and production control of, by the galvanostatic pulse method, 395

Temperature

- low, discharge characteristics of lithium-manganese dioxide cells, 35
- Traction batteries
 - lead/acid, under simulated electric vehicle service, crystalline phase

Tubular positives

lead/acid, factors affecting the formation of, 385 Zinc

-chlorine batteries, a design for, 359 silver-zinc batteries, construction of miniature, and the technology for their mass production, 67